A Learning to Rank from Noisy Data

نویسندگان

  • Wenkui Ding
  • Xiubo Geng
  • Xu-Dong Zhang
چکیده

Learning to Rank, which learns the ranking function from training data, has become an emerging research area in information retrieval and machine learning. Most existing work on learning to rank assumes that the training data is clean, which is, however, not always true. The ambiguity of query intent, the lack of domain knowledge, and the vague definition of relevance levels, all make it difficult for common annotators to give reliable relevance labels to some documents. As a result, the relevance labels in the training data of learning to rank usually contain noise. If we ignore this fact, the performance of learning-to-rank algorithms will be damaged. In this paper we propose considering the labeling noise in the process of learning to rank and using a two-step approach to extend existing algorithms to handle noisy training data. In the first step, we estimate the degree of labeling noise for a training document. To this end, we assume that the majority of the relevance labels in the training data are reliable and use a graphical model to describe the generative process of a training query, the feature vectors of its associated documents, and the relevance labels of these documents. The parameters in the graphical model are learned by means of maximum likelihood estimation. Then the conditional probability of the relevance label given the feature vector of a document is computed. If the probability is large, we regard the degree of labeling noise for this document as small; otherwise, we regard the degree as large. In the second step, we extend existing learning-to-rank algorithms by incorporating the estimated degree of labeling noise into their loss functions. Specifically, we give larger weights to those training documents with smaller degrees of labeling noise and smaller weights to those with larger degrees of labeling noise. As examples, we demonstrate the extensions for McRank, RankSVM, RankBoost, and RankNet. Empirical results on benchmark datasets show that the proposed approach can effectively distinguish noisy documents from clean ones, and the extended learning-to-rank algorithms can achieve better performances than baselines. CCS Concepts: rInformation systems→ Learning to rank;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Joint Projection and Dictionary Learning using Low-rank Regularization and Graph Constraints

In this paper, we aim at learning simultaneously a discriminative dictionary and a robust projection matrix from noisy data. The joint learning, makes the learned projection and dictionary a better fit for each other, so a more accurate classification can be obtained. However, current prevailing joint dimensionality reduction and dictionary learning methods, would fail when the training samples...

متن کامل

GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...

متن کامل

Kernel Principal Component Ranking: Robust Ranking on Noisy Data

We propose the kernel principal component ranking algorithm (KPCRank) for learning preference relations. The algorithm can be considered as an extension of nonlinear principal component regression applicable to preference learning task. It is particularly suitable for learning from noisy datasets where a lower dimensional data representation preserves most expressive features. In many cases nea...

متن کامل

ارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبه‌بندی در بازیابی اطلاعات

Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015